Fluids are drugs used in veterinary patients capable of producing beneficial therapeutic or inadvertent harmful effects within the body’s intravascular, interstitial, and intracellular fluid spaces. The individualized design of a fluid therapy plan requires careful patient assessment and targeted selection of proper fluid types, administration routes, and rates, along with adjustments during therapy tailored specifically as per the individual patient’s fluid requirement and therapeutic response. Personalized fluid prescriptions and vigilant patient monitoring help avoid patient morbidity from body fluid deficiencies, fluid excess, and electrolyte derangements and support better patient outcomes. These guidelines provide an overview of fluid dynamics within the fluid spaces of the body, describe various types of fluids and their uses, and outline recommendations for fluid administration for resuscitation, rehydration, and maintenance purposes. The guidelines also outline approaches to fluid therapy for anesthetized patients and reiterate the recommendations of reduced fluid rates in this population of patients. Additionally, the guidelines include practical fluid therapy strategies for patients with various common disorders. The goal of these guidelines is to help veterinary professionals safely and effectively prescribe and administer fluid therapy for canine and feline patients.
Corrigenda: The following were corrected from the original printed version of these guidelines:
On page 138, Box 3, calculating the Fluid Deficit, Fluid Deficit was incorrectly labeled as (mL). The corrected unit is Fluid Deficit (L).
On page 141, Table 8, the pH for Normosol R was incorrectly labeled as 5.0. It was corrected to 7.4 and 6.6.
On page 142, Table 9, Rehydration, the total fluid deficit was incorrectly labeled as (mL). The corrected unit is total fluid deficit (L).
This case report describes the treatment of a postoperative painful neuroma of the tibial nerve using an autologous nerve graft in a dog. The patient presented with sudden non–weight-bearing lameness 10 days after iatrogenic tibial nerve injury during preparation of a reverse saphenous conduit flap. The dog showed severe pain at the surgical site without nerve deficits. A magnetic resonance imaging examination revealed an enlarged tibial nerve at the injury site, consistent with a neuroma. Analgesics were administered over 11 days, but the patient remained in severe pain and non–weight-bearing. Therefore, surgical resection was recommended. The fusiform neuroma was resected microsurgically, and a saphenous nerve graft was transplanted using an epineural nerve repair technique. Histopathological examination was consistent with a neuroma. The dog showed immediate pain relief and weight-bearing the day after surgery with normal motor function. The dog made a full recovery by the last follow-up 6 mo after surgery. If patients develop pain and lameness following surgery or nerve injury, neuroma formation must be considered, even shortly after surgery. Microsurgical resection and autologous nerve transplantation using an epineural nerve repair technique is a viable method to treat painful neuromas and minimize the risk for recurrence in dogs.